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Improving Forecast Accuracy of 
Financial Vulnerability: Partial Least 

Squares Factor Model Approach

We present a factor augmented forecasting model for assessing the financial 

vulnerability in Korea. Dynamic factor models often extract latent common 

factors from a large panel of time series data via the method of the principal 

components (PC). Instead, we employ the partial least squares (PLS) method   

that estimates target specific common factors, utilizing covariances between 

predictors and the target variable. Applying PLS to 198 monthly frequency 

macroeconomic time series variables and the Bank of Korea's Financial Stress 

Index (KFSTI), our PLS factor augmented forecasting models consistently 

outperformed the random walk benchmark model in out-of-sample prediction 

exercises in all forecast horizons we considered. Our models also outperformed 

the autoregressive benchmark model in short-term forecast horizons. We ex-  

pect our models would provide useful early warning signs of the emergence of 

systemic risks in Korea's financial markets.

Keywords: Partial least squares, Principal component analysis,  Financial 
stress index, Out-of-sample forecast, RRMSPE, DMW statistics
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Ⅰ. Introduction

Financial crises often come to a surprise realization with no systemic 

warnings. Furthermore, as Reinhart and Rogoff (2014) point out, harmful 

spillover effects on other sectors of the economy are likely to be severe because 

recessions followed by financial crises are often longer and deeper than other 

economic downturns. To avoid financial crises, Reinhart and Rogoff (2009) 

suggest to use an early-warning system (EWS) that alerts policy makers and 

financial market participants to incoming danger signs.

To design an EWS, it is crucially important to obtain a proper measure of the 

financial vulnerability that quantifies the potential risk in financial markets. 

One may consider the conventional Exchange Market Pressure (EMP) index 

proposed by Girton and Roper (1977). Instead, this paper employs an 

alternative measure known as financial stress index (FSTI) that is rapidly 

gaining popularity since the recent financial crisis.

The EMP index is computed using a small number of monetary variables 

such as exchange rate depreciations and changes in international reserves. On 

the other hand, FSTI is constructed utilizing a broad range of key financial 

market variables. In the US, 12 financial stress indices have currently become 

available (Oet, Eiben, Bianco, Gramlich, and Ong, 2011) since the recent 

financial crisis. The Bank of Korea also developed FSTI (KFSTI) in 2007 and 

started to report it on a yearly basis in their Financial Stability Report.

In this paper, we employ the monthly frequency KFSTI data as a proxy 

variable for financial market risk in Korea, and propose an out-of-sample 

forecasting procedure that extracts potentially useful predictive contents for 

KFSTI from a large panel of monthly frequency macroeconomic data.1)

Conventional approaches to predict financial crises include the following. 

Frankel and Saravelos (2012) and Sachs, Tornell, and Velasco (1996) used linear 

regression approaches to test the statistical significance of various economic 

variables on the occurrence of historical crisis episodes. Others employed 

1) High frequency KFSTI data are for internal use only. We appreciate the Bank of Korea for giving 
permission to use the monthly frequency data.
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discrete choice models including parametric probit or logit models (Frankel and 

Rose, 1996; Eichengreen, Rose, and Wyplosz, 1995; Cipollini and Kapetanios, 

2009) and nonparametric signals approach (Kaminsky, Lizondo, and Reinhart, 

1998; Edison, 2003; EI-Shagi, Knedlik, and von Schweinitz, 2013; Christensen 

and Li, 2014).

Our forecasting procedure is different from these earlier studies in the sense 

that we extract potentially useful predictive contents for a new measure of the 

financial vulnerability such as the KFSTI from a broad range of macroeconomic 

time series data. Our proposed method is suitable in a data-rich environment, 

and may be considered as an alternative to dynamic factor models that are 

widely employed in the recent macroeconomic forecasting literature.

Since the influential work of Stock and Watson (2002), factor models often 

utilize principal components (PC) analysis to extract latent common factors 

from a large panel of predictor variables. Estimated factors, then, can be used 

to formulate forecasts of a target variable employing linear regressions of the 

target on estimated common factors. It should be noted that the PC method 

constructs common factors based solely on predictor variables.2) Boivin and Ng 

(2006), however, pointed out that the performance of the PC method may be 

poor in forecasting the target variable if predictive contents are in a certain 

factor that may be dominated by other factors.

To overcome this issue, we employ the partial least squares (PLS) method 

that is proposed by Wold (1982). The method constructs target specific common 

factors from linear, orthogonal combinations of predictor variables taking the 

covariance between the target variable and predictor variables into account. 

Even though Kelly and Pruitt (2015) demonstrate that PC and PLS generate 

asymptotically similar factors when the data has a strong factor structure, Groen 

and Kapetanios (2016) show that PLS models outperform PC-based models in 

forecasting the target variable in the presence of a weak factor structure.

In this paper, we estimate multiple common factors using PLS from a large 

panel of 198 monthly frequency macroeconomic data in Korea and the KFSTI 

2) Cipollini and Kapetanios (2009) employed the dynamic factor model via the PC method for their 
out-of-sample forecasting exercises for financial crisis  episodes.
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from October 2000 to June 2016. We apply PLS to the first differenced 
macroeconomic data and the KFSTI to avoid issues that are associated with 

nonstationarity in the data.3) Then, we augment two types of benchmark 

models, the nonstationary random walk (RW) and the stationary autoregressive 

(AR) models, with estimated PLS factors to out-of-sample forecast the KFSTI 

foreign exchange market index (KFSTI-FX) and the KFSTI stock market index 

(KFSTI-Stock).

We evaluate the out-of-sample forecast accuracy of our PLS-based models 

relative to these benchmark models using the ratio of the root mean squared 

prediction errors (RRMSPE) and the Diebold-Mariano-West (DMW) test 

statistics. We employed both the recursive (expanding window) method and the 

fixed-size rolling window method. Based on the RRMSPE and the DMW 
statistics, our models consistently outperform the benchmark RW models in 

out-of-sample predictability in all forecast horizons we consider for up to one 

year. On the other hand, our models outperform the AR benchmark model 

only in short-term forecast horizons.

Financial market stability is viewed an important objective of many central 

banks. To the best of our knowledge, the present paper is the first to predict the 

emergence of systemic risks in financial markets in Korea using PLS-based 

dynamic factor models.4) We expect our models help provide useful early 

warning indicators of financial distress that may become prevalent in Korea's 

financial markets, resulting in harmful spillovers to other sectors of the 

economy.

The rest of the paper is organized as follows. Section 2 explains how we 

extract latent common factors and formulate out-of-sample forecasts using PLS 

factor-augmented forecasting models. We also describe our out-of-sample 

forecast strategies and model evaluation methods. In Section 3, we provide data 

descriptions and report our major empirical findings. Section 4 concludes.

3) Bai and Ng (2004) propose a similar method for their panel unit root test procedure that uses PC to estimate 
latent factors.

4) Kim, Shi, and Kim (2016) implemented similar forecasting exercises using factor estimates from the PC 
method, which utilizes 198 predictor variables but not the target variable.
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Ⅱ. The Econometric Method

1. The Method of the Principal Components

Consider a panel of N macroeconomic time series predictor variables, 

ⅹ  ⅹⅹ⋯ⅹ , where ⅹ  ⋯  ′ ,   ⋯ . Dynamic 

factor models that are based on the principal component (PC) method (e.g., 

Stock and Watson, 2002) assume the following factor structure for x. Abstracting 

from deterministic terms,

   
′ｆ    ,                                              (1)

where ｆ       ⋯ ′ is an × vector of latent common factors at 

time t and    ⋯ ′  denotes an × vector of time-invariant 

associated factor loading coefficients.    is the idiosyncratic error term.

As shown by Nelson and Plosser (1982), most macroeconomic time series 

variables are better approximated by a nonstationary stochastic process. 

Further, Bai and Ng (2004) pointed out that the PC estimator for f t from (1) 

may be inconsistent when    is an integrated process. As Bai and Ng (2004) 

suggested, one may estimate f t and  via the PC method for the first-differenced 

data. For this, rewrite (1) as follows.

   
′ｆ                                         (2)

for   ⋯. After normalizing ｘ  ｘｘ⋯ｘ , we apply PC to 

ｘｘ′  to obtain the factor estimates ｆ  along with their associated factor 

loading coefficients .5) Estimates for the idiosyncratic components are naturally 

given by the residuals      
′
ｆ . Level variables are recovered as 

5) We first normalize the data prior to estimations, because the method of the principal components is not scale 
invariant.
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follows,

   
  



 
ｆ  

  



ｆ                             (3)

2. The Partial Least Squares Method

Partial least squares (PLS) models for a scalar target variable   are motivated 

by the following linear regression model. Abstracting from deterministic terms,

  ⅹ
′  ,                                               (4)

where ⅹ   ⋯ ′ is an × vector of predictor variables 

at time   ⋯   is an × vector of associated coefficients, and   is an 

error term. Note that we use the first-differenced predictor variables, assuming 

that ｘ  is a vector of integrated processes.

PLS models are useful especially when N is large. Instead of running a 

regression for (4), one may employ a data dimensionality reduction method via 

the following regression with an × vector of components 

       ⋯  ′,    as follows,

  ｘ
′ｗ  

 
′ｗ  

                                       (5)

That is,

 ｗ′ｘ ,                                              (6)

and ｗ  ｗｗ⋯ｗ  is an × matrix of each column 

ｗ    ⋯  ′,   ⋯, is an × vector of weights on 

predictor variables for the    component or factor.   is an × vector of PLS 

regression coefficients.
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PLS regression minimizes the sum of squared residuals from the equation (5) 

for   instead of   in (4). It should be noted, however, that we do not directly 

utilize   in the present paper. In what follows, we employ a two-step forecasting 

method so that our models are comparable with the PC-based forecasting 

models. That is, we estimate   via the PLS method, then augment our 

benchmark forecasting model with PLS factor estimates for  .

There are many available PLS algorithms (Andersson, 2009) that work well. 

Among others, one may use the algorithm proposed by Helland (1990) to 

forecast the j-period ahead target variable   ,   ⋯. One may obtain 

these factors recursively as follows. First,    is determined by the following 

linear combinations of the predictor variables in ｘ .

   
 



 ,                                        (7)

where the loading (weight)  is given by       .

Next, regress    and   on   to get residuals,    and  , 

respectively. The second factor estimate    is then obtained similarly as in (7) 

with        . We repeat until the    factor   is obtained.

3. The PLS Factor Forecast Models

Our first PLS factor forecast model, the PLS-RW model, is motivated by a 

nonstationary random walk process augmented by  . Abstracting from 

deterministic terms,

  
    

′         ⋯ ,                (8)

that is, when   ,   obeys the random walk (RW) process.

Since the coefficient on   is fixed, we cannot use the unrestricted least 

squares estimator for (8). We resolve this problem by regressing       on 
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  first to obtain the consistent estimate .6) Adding   back to the fitted 

value, we obtain the following j-period ahead forecast for   ,

    
   

′
 ,                                                (9)

The natural benchmark (BM) model of the PLS-RW model (8) is the 

following RW model.

  
       ,                                             (10)

where    in (9) is a partial sum of the white noise process  , that is,    

  
    . It should be noted that our PLS-RW model (8) nests this RW 

benchmark model (10) when   . The j-period ahead forecast from this 

benchmark RW model is,

    
                                                 (11)

Our second PLS factor forecast model, the PLS-AR model, is motivated by a 

stationary AR(1)-type stochastic process augmented by PLS factor estimates 

 . Abstracting from deterministic terms,

  
     

′         ⋯ ,                (12)

where  is less than one in absolute value for stationarity.

We again employ a direct forecasting approach by regressing the j-period 

ahead target variable (  ) directly on the current period target variable ( ) 

and the estimated factors ( ). Note that (12) is an AR (1) process for    

6) That is, we assume that     is stationary.
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extended by covariates  . Applying the ordinary least squares (LS) estimator 

for (12), we obtain the following  j-period ahead forecast for the target variable,

    
    

′
 ,                                      (13)

where  and  are the least squares coefficient estimates.

Naturally, the benchmark model for the PLS-AR (12) is the following 

stationary AR(1)-type or simply the AR model,

  
            ⋯ ,                         (14)

which relates    directly with the current value  . The j-period ahead forecast 

from this model is,

  
    ,                                            (15)

where  is obtained by regressing    directly on   as in (14).7) Note that the 

PLS-AR model (12) nests the stationary benchmark model (14) when   does 

not contain any useful predictive contents for   , that is,   .

4. Out-of-Sample Forecast Strategies

We first implement out-of-sample forecast exercises employing a recursive 

(expanding window) scheme. After estimating PLS factors   
  using the 

initial     observations,     
 ,     ⋯ , we obtain the 

j-period ahead out-of-sample forecast for the target variable,   by (9) or 

(13). Then, we expand the data by adding one more observation, 

7) One may employ a recursive approach with an AR (1) model,       . Given the estimate of the 

persistence parameter, one may formulate the j-period ahead forecast by 

 .
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    
   ,    ⋯  , and re-estimate   

    which is used to 

formulate the next forecast,    . We repeat this until we forecast the last 

observation,  . We implement forecasting exercises under this expanding 

window scheme for up to 12-month forecast horizons,    ⋯.

We also employ a fixed-size rolling window method, which performs better 

than the recursive method in the presence of structural breaks. After we obtain 

the first forecast   using the initial    observations,     
 , 

   ⋯  , we add one observation but drop one earliest observation for the 

next round forecasting.

That is, we re-estimate   
   from    

   ,    ⋯ , 

maintaining the same number of observations () to obtain the second round 

forecast,    . Again, we repeat until we forecast the last observation,  .

For model evaluations regarding the out-of-sample prediction accuracy, we 

use the ratio of the root mean square prediction error (RRMSPE) defined as 

follows,

 



 


   
     

 




 


   
     

 


    ,              (16)

where

    
          

 ,      
          

                      (17)

Note that our PLS models outperform the benchmark models when RRMSPE is 
greater than 1.

We supplement our analyses by employing the Diebold-Mariano-West (DMW) 

test. For this, we define the following loss differential function,
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      
       

  ,                                     (18)

where the squared loss function can be replaced with the absolute value loss function.

The DMW statistic is defined as follows to test the null of equal predictive 

accuracy, that is,     ,

 

 ,                                    (19)

where   is the sample average,   


   
  . In the presence of 

serial correlations,  denotes the long-run variance of  ,

 

 
 



 ,                              (20)

where ․ is a kernel function with the bandwidth parameter , and  is the 

   autocovariance function estimate.

Ⅲ. Empirical Findings

1. Data Descriptions

We employ the financial stress index (KFSTI) data to quantify the financial 

vulnerability in Korea. The Bank of Korea introduced the index in 2007 and 

report KFSTI on a yearly basis in their Financial Stability Report. We obtained 

monthly frequency data, which in principle are for internal use only.8) The data 

is available from May 1995, but our sample period covers from October 2000 

until August 2016 to obtain a large panel of predictor variables.

8) We obtained permission from the Bank of Korea to use the data for this research.
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We use the following two KFSTI sub-indices, one for the foreign exchange 

market (KFSTI-FX) and the other one for the stock market (KFSTI-Stock). We 

do not report forecasting exercise results for the two other KFSTI sub-indices 

for the bond market and for the financial industry, since not only our PLS 

factor models but also PC models performed relatively poorly for these two 

indices. That is, these sub- indices seems to be somewhat disconnected from the 

common factor estimates in the present paper. Put it differently, such limited 

performances of our factor models might be due to the fact that our common 

factors are extracted from macroeconomic predictor variables even though the 

financial industries and bond markets are often influenced by non-economic 

political factors.

Figure 1 provides graphs of the KFSTI-FX and the KFSTI-Stock. We note 

that both indices exhibit a sharp spike during the recent financial crisis that 

Figure 1: Korean Financial Stress Index
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began in 2008. KFSTI-Stock exhibits more frequent turbulent periods in 

comparison with dynamics of the KFSTI-FX.

We obtained 198 predictor variables from the Bank of Korea. Observations 

are monthly frequency and span from October 2000 to August 2016. All 

variables other than those in percent (e.g., interest rates and unemployment 

rates) are log-transformed prior to estimations. We categorized these 198 time 

series data into 13 groups as summarized in Table 1.

Group #1 includes 14 domestic and world nominal interest rates. Groups #2 

through #4 are an array of prices and monetary aggregate variables, while group 

#5 consist of bilateral nominal exchange rates. That is, groups #1 through #5 

represent nominal sector variables in Korea. On the other hand, groups #6 

through #11 entail various kinds of real activity variables such as production, 

inventory, and labor market variables. The last two groups represent business 

condition indices and stock market indices in Korea, respectively.

2. Evaluations of the Model

This subsection discusses the in-sample fit and the out-of-sample prediction 
performance of our PLS factor models relative to those of the benchmark and 
PC factor models.

Table 1: Macroeconomic Data Descriptions

Group ID Data ID Data Descriptions

#1 1-14 Domestic and World   Interest Rates

#2 15-35 Exports/Imports Prices

#3 36-54 Producer/Consumer/Housing Prices

#4 55-71 Monetary Aggregates

#5 72-83 Bilateral Exchange Rates

#6 84-110 Manufacturers’/Construction New Orders

#7 111-117 Manufacturers’Inventory Indices

#8 118-135 Housing Inventories

#9 136-157 Sales and Capacity Utilizations

#10 158-171 Unemployment/Employment/Labor Force Participation

#11 172-180 Industrial Production Indices

#12 181-186 Business Condition Indices

#13 187-198 Stock Indices
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2.1. In-Sample Fit Analysis

Figure 2 reports estimated level PC factors, ｆ    
 ｆ , for up to 6 

factors, along with their associated factor loading coefficient estimates (). In 

Figure 3 and Figure 4, we report level PLS factors     
   for the 

KFSTI-FX and the KFSTI-Stock, respectively, and their weight matrix estimates 

(ｗ ). Note that we report two sets of PLS factors whereas only one set of PC 

factors is presented. This is because the PLS method utilizes the covariance 

between the predictor variables and the target variable, whereas the PC method 

does not consider the target variable when it extracts the common factors.

We noticed that PC factors are very different from PLS factors for each 

KFSTI index. Further, we note that  estimates are very different from ｗ , 

meaning that PLS and PC factor estimates are obtained from utilizing different 

combinations of the predictor variables x. Since we are mainly interested in 

out-of-sample predictability performances of the PLS method relative other 

models, we do not attempt to trace the sources of these factors. However, 

distinct factor estimates from the PLS and the PC methods imply that the 

performance of these methods would differ in out-of-sample forecasting 

exercises we report in what follows.

We also report    values in Figure 5, obtained from LS regressions of the 

target variable   on estimated factors,   and ｆ , for up to 12 factors. Not 

surprisingly, PLS factors provide much better in-sample fit performance than 

PC factors, because   is estimated using the covariance between the target 

and the predictor variables. For example,    from  is over 0.3, whereas that 

from   is slightly over 0.02 for the KFSTI-FX. In the case of the 

KFSTI-Stock,    from   is about 0.2, while   virtually has no explanatory 

power.
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Figure 2: Principal Component Analysis

Note: Estimated level factors via the method of the principal component are reported in the top panel. 
Graphs in the bottom panel are factor loading coefficients estimates.
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Figure 3: Partial Least Squares Estimation: Foreign Exchange Market

Note: Estimated level factors via the partial least squares method are reported in the top panel. Graphs in 
the bottom panel are weighting matrix estimates.
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Figure 4: Partial Least Squares Estimation: Stock Market

Note: Estimated level factors via the partial least squares method are reported in the top panel. Graphs in 
the bottom panel are weighting matrix estimates.
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Figure 5: In-Sample Fit Analysis: R Squares

       Note: We report R2 and cumulative R2 values in the top and lower panel, respectively.

Note that   and   have the highest   for the KFSTI-FX and for the 

KFSTI-Stock, respectively, whereas contributions of PLS factors are the highest 

for the first factor estimate  . That is, marginal   decreases when we regress 

the target variable to the next PLS factors. This is because we extract orthogonal 
PLS factors sequentially, utilizing the remaining covariances of the target and 

the predictor variables. Since the PC method uses only the predictor variables 

without considering the target variable, marginal    values do not necessarily 

decrease. Cumulative    value with up to 12 PLS factors is about 0.8 for both 

indices, whereas that with PC factors is less than 0.3 and 0.2 for the foreign 

exchange index and the stock index, respectively. In a nutshell, the PLS method 

yields superior in-sample fit performance in comparison with the PC method.
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2.2. Out-of-Sample Forecasting Performance

In Table 2 and Table 3, we report RRMSPE’s and the DMW statistics of the 
PLS-RW forecasting model (9) relative to the performance of the RW 
benchmark model (11) for the KFSTI-FX and the KFSTI-Stock, respectively. We 
implement out-of-sample forecast exercises using up to 12 () factor estimates 
obtained from PLS for       for up to 12-month forecast horizons (). 

We used  for the sample split point, that is, initial 50% observations were 

used to formulate the first out-of-sample forecast in implementing forecasting 
exercises via the recursive (expanding window) scheme as well as the fixed-size 
rolling window scheme.

Table 2: PLS-RW vs. RW: Foreign Exchange Market

    
   

′
ｃ vs.     

  

Recursive Rolling Window Recursive Rolling Window

           

1 1 0.924 -1.447 1.028 1.327 6 1 0.993 -0.090 1.057 1.306
2 1.006 0.130 1.052 1.854 2 1.040 0.416 1.090 2.014
4 1.030 0.498 1.047 1.607 4 1.172 1.548 1.145 3.485
6 1.157 1.166 1.056 1.340 6 1.336 2.188 1.201 3.386
9 1.291 3.760 1.050 1.278 9 1.328 3.126 1.151 2.753
12 1.377 2.142 1.046 0.959 12 1.544 2.012 1.155 2.657

2 1 0.960 -0.558 1.019 0.806 8 1 0.985 -0.171 1.084 2.556
2 0.990 -0.143 0.979 -0.485 2 1.049 0.462 1.088 1.667
4 1.086 1.093 1.035 1.032 4 1.238 1.999 1.196 3.536
6 1.159 1.360 1.056 1.551 6 1.295 1.956 1.169 3.081
9 1.215 3.008 1.052 1.303 9 1.356 3.978 1.217 3.783
12 1.360 2.276 1.060 1.193 12 1.470 2.016 1.189 2.949

4 1 0.964 -0.456 1.033 0.640 10 1 0.992 -0.092 1.038 0.972
2 1.031 0.382 1.059 1.363 2 1.077 0.708 1.055 0.929
4 1.111 1.184 1.128 3.594 4 1.290 2.241 1.135 1.803
6 1.281 2.139 1.213 3.176 6 1.330 2.149 1.072 1.259
9 1.337 4.173 1.171 3.116 9 1.356 3.626 1.182 3.059
12 1.550 2.281 1.132 2.395 12 1.572 2.391 1.213 2.990

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared 
prediction error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial 
Least Squares factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and 
forecasting starting from the first 50% observations until we (out-of-sample) forecast the last observation 
of the KFSTI. DMW statistics in bold denote the rejection of the null hypothesis of equal predictability at 
the 5% significance level in favor of our factor models. The critical values are from McCracken (2007) to 
avoid size distortion because the benchmark model is nested by our factor model.
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Most RRMSPE values are strictly greater than 1, and the DMW test rejects 

the null of equal predictability favoring our factor models. That is, our PLS-RW 

model consistently outperforms the RW benchmark model in all forecast 

horizons and in both the recursive and the rolling window method. It should be 

noted that we use critical values from McCracken (2007) instead of the 

asymptotic critical values from the standard normal distribution, because the 

PLS-RW model nests the RW benchmark model.9)

9) Asymptotic critical values are not valid when one model nests the other model.

Table 3: PLS-RW vs. RW: Stock Market

    
   

′
ｃ vs.     

  

Recursive Rolling Window Recursive Rolling Window

           

1 1 0.992 -1.241 0.993 -3.170 6 1 1.045 1.227 1.127 3.155
2 0.992 -0.980 1.009 0.933 2 1.078 1.242 1.271 3.553
4 0.992 -0.544 1.010 0.730 4 1.111 1.763 1.334 3.175
6 1.016 0.888 1.003 0.190 6 1.107 2.038 1.333 3.277
9 1.024 0.703 1.007 0.244 9 1.114 1.245 1.341 2.697
12 1.017 0.610 1.010 0.381 12 1.107 1.836 1.338 3.240

2 1 1.020 1.362 1.058 2.802 8 1 1.052 1.249 1.137 2.891
2 1.019 0.765 1.089 2.423 2 1.064 0.932 1.282 3.194
4 1.015 0.571 1.128 2.775 4 1.104 1.550 1.317 3.004
6 1.047 1.554 1.119 2.666 6 1.121 2.048 1.337 3.262
9 1.032 0.702 1.137 2.051 9 1.114 1.184 1.331 2.630
12 1.011 0.411 1.091 2.004 12 1.102 1.703 1.377 3.179

4 1 1.022 0.631 1.132 4.068 10 1 1.097 1.534 1.147 3.248
2 1.056 0.878 1.253 3.608 2 1.060 0.812 1.280 3.076
4 1.065 1.079 1.314 3.460 4 1.125 1.762 1.321 2.787
6 1.099 1.839 1.304 3.391 6 1.126 2.075 1.384 3.098
9 1.126 1.340 1.419 3.242 9 1.134 1.312 1.358 2.591
12 1.132 2.207 1.294 2.982 12 1.147 2.330 1.482 3.476

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared 
prediction error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial 
Least Squares factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and 
forecasting starting from the first 50% observations until we (out-of-sample) forecast the last observation 
of the KFSTI. DMW statistics in bold denote the rejection of the null hypothesis of equal predictability at 
the 5% significance level in favor of our factor models. The critical values are from McCracken (2007) to 
avoid size distortion because the benchmark model is nested by our factor model.
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Table 4 and Table 5 report the forecasting performance of the PLS-AR 

model (13) relative to the AR benchmark model (15). Results sharply contrast 

with earlier results reported in Table 2 and Table 3. The PLS-AR model 

outperforms the AR model only in the short-term forecast horizons. More 

specifically, the PLS-AR model outperforms the AR model in 1-month ahead 

out-of-sample forecast for the KFSTI-FX under the recursive forecasting 

scheme, while the AR model performs better in most other cases. The PLS-AR 

model performs relatively better for the KFSTI-Stock, as RRMSPE values are 

greater than 1 at least in one-month ahead forecast for the index under the 

both schemes.

Table 4: PLS-AR vs. AR: Foreign Exchange Market

    
    

′
ｃ vs.     

   

Recursive Rolling Window Recursive Rolling Window

           

1 1 1.048 1.721 0.997 -0.320 6 1 1.022 0.602 0.953 -3.801
2 1.000 0.002 0.973 -1.839 2 0.989 -0.371 0.944 -2.565
4 1.001 0.262 0.995 -1.035 4 0.995 -0.135 0.968 -1.872
6 0.984 -0.527 0.993 -1.414 6 0.896 -2.981 0.984 -1.023
9 0.951 -2.547 0.998 -0.657 9 0.905 -2.576 0.997 -0.259
12 0.953 -1.333 0.996 -0.717 12 0.979 -0.502 0.969 -1.354

2 1 1.054 1.658 0.985 -0.970 8 1 1.029 0.710 0.954 -3.566
2 0.999 -0.044 0.955 -2.196 2 0.999 -0.043 0.938 -2.825
4 1.010 0.532 0.981 -1.647 4 1.031 0.900 0.972 -1.517
6 0.983 -0.428 0.991 -0.992 6 0.868 -2.883 0.954 -1.949
9 0.960 -2.237 1.005 0.582 9 0.907 -2.643 0.981 -0.910
12 0.963 -1.396 0.993 -0.457 12 0.963 -0.619 0.945 -1.714

4 1 1.019 0.703 0.978 -2.320 10 1 1.024 0.512 0.933 -3.466
2 1.001 0.039 0.962 -2.214 2 0.987 -0.315 0.923 -2.945
4 1.001 0.048 0.960 -3.191 4 1.066 1.579 0.934 -1.226
6 0.964 -0.878 0.988 -0.980 6 0.877 -2.568 0.897 -2.589
9 0.921 -2.291 1.025 0.976 9 0.837 -2.935 0.976 -0.689
12 0.941 -1.961 0.974 -1.363 12 0.993 -0.160 0.926 -2.081

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared 
prediction error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial 
Least Squares factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and 
forecasting starting from the first 50% observations until we (out-of-sample) forecast the last observation 
of the KFSTI. DMW statistics in bold denote the rejection of the null hypothesis of equal predictability at 
the 5% significance level in favor of our factor models. The critical values are from McCracken (2007) to 
avoid size distortion because the benchmark model is nested by our factor model.
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Even though the performance of the PLS-AR model relative to the AR 

benchmark is not overwhelmingly good, it should be noted that the PLS-AR 

model can still provide useful early warning indicators of incoming danger to 

Korea's financial market. Financial crises often occur abruptly and unexpectedly. 

Given such tendency, it is good to have an instrument that generates warning 

signs before the systemic risks materialize in the financial market.

We repeat the same exercises using combinations of   and ｆ  and 

report the results in Table 6 through Table 9. That is, we extended the 

benchmark forecasting models using equal numbers of factors obtained from 

the PLS and the PC methods.

Table 5: PLS-AR vs. AR: Stock Market

    
    

′
ｃ vs.     

   

Recursive Rolling Window Recursive Rolling Window

           

1 1 1.018 1.717 1.032 3.786 6 1 1.035 1.703 1.032 1.197
2 1.001 0.171 1.023 3.315 2 1.011 0.699 1.030 1.162
4 0.991 -1.763 1.037 3.116 4 1.012 0.727 0.976 -0.670
6 0.994 -3.829 1.032 2.585 6 0.991 -0.777 0.945 -1.276
9 0.992 -3.448 1.011 1.357 9 1.002 0.152 0.894 -1.614
12 0.992 -1.170 1.008 0.373 12 0.989 -0.511 0.910 -1.359

2 1 1.021 1.789 1.035 2.765 8 1 1.053 2.049 1.013 0.477
2 1.001 0.139 1.019 1.644 2 1.006 0.344 1.002 0.078
4 0.993 -1.312 1.039 2.821 4 1.016 0.991 0.925 -1.793
6 0.990 -3.169 1.019 0.871 6 0.990 -0.792 0.930 -1.309
9 0.986 -2.030 0.979 -0.826 9 1.004 0.263 0.838 -2.262
12 0.992 -0.470 0.942 -1.311 12 1.001 0.030 0.884 -1.636

4 1 1.013 0.856 1.043 2.642 10 1 1.075 1.934 1.018 0.731
2 1.003 0.154 1.051 2.939 2 0.997 -0.128 0.996 -0.127
4 0.995 -0.500 1.052 2.503 4 1.021 1.167 0.906 -1.905
6 0.986 -2.355 0.997 -0.120 6 0.983 -1.189 0.886 -2.004
9 0.989 -0.764 0.983 -0.375 9 1.020 0.988 0.814 -2.186
12 0.979 -0.972 0.887 -1.908 12 1.009 0.339 0.862 -1.972

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared 
prediction error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial 
Least Squares factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and 
forecasting starting from the first 50% observations until we (out-of-sample) forecast the last observation 
of the KFSTI. DMW statistics in bold denote the rejection of the null hypothesis of equal predictability at 
the 5% significance level in favor of our factor models. The critical values are from McCracken (2007) to 
avoid size distortion because the benchmark model is nested by our factor model.
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For example,    means that  ,  ,  , and   are used as 

condensed predictor variables. Results are qualitatively similar to previous 

performances reported in Table 2 through Table 5. That is, marginal 

contributions of using PC factors (ｆ ) in addition to PLS factors ( ) are 

mostly negligibly small.

Table 6: PLS-PCA-RW vs. RW: Foreign Exchange Market

    
   


′
ｚ vs.     

  

Recursive Rolling Window Recursive Rolling Window

           

2 1 0.938 -1.136 1.029 1.696 8 1 1.009 0.103 1.038 0.802

2 0.995 -0.086 1.013 0.415 2 1.076 0.750 1.080 1.688

4 1.057 0.846 1.045 1.466 4 1.226 1.727 1.154 2.993

6 1.145 1.104 1.050 1.214 6 1.327 2.222 1.180 3.005

9 1.171 2.460 1.027 0.655 9 1.363 3.871 1.146 2.566

12 1.359 2.049 1.047 0.965 12 1.493 1.999 1.135 2.056

4 1 0.962 -0.518 1.037 1.417 10 1 0.954 -0.508 1.064 2.185

2 1.016 0.216 1.029 0.709 2 1.050 0.461 1.061 1.410

4 1.086 0.966 1.102 2.752 4 1.217 1.937 1.129 2.640

6 1.222 1.609 1.154 2.995 6 1.285 1.860 1.137 2.506

9 1.330 4.297 1.133 2.907 9 1.340 3.518 1.167 2.959

12 1.536 2.336 1.095 1.643 12 1.443 1.893 1.144 2.185

6 1 0.959 -0.579 1.014 0.252 12 1 0.944 -0.586 1.033 0.847

2 1.025 0.330 1.067 1.599 2 1.045 0.411 1.028 0.419

4 1.101 1.005 1.124 3.425 4 1.165 1.377 1.078 0.809

6 1.277 2.008 1.209 2.751 6 1.163 0.910 1.092 1.485

9 1.324 3.590 1.132 2.450 9 1.331 3.149 1.160 2.825

12 1.590 2.271 1.109 2.097 12 1.576 2.037 1.131 2.755

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared 
prediction error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial 
Least Squares factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and 
forecasting starting from the first 50% observations until we (out-of-sample) forecast the last observation 
of the KFSTI. DMW statistics in bold denote the rejection of the null hypothesis of equal predictability at 
the 5% significance level in favor of our factor models. The critical values are from McCracken (2007) to 
avoid size distortion because the benchmark model is nested by our factor model.
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Table 7: PLS-PC-RW vs. RW: Stock Market

    
   


′
ｚ vs.     

  

Recursive Rolling Window Recursive Rolling Window

           

2 1 1.001 0.167 1.006 0.645 8 1 1.047 1.226 1.121 2.881

2 0.996 -0.238 1.016 0.965 2 1.079 1.228 1.243 3.171

4 0.993 -0.402 1.018 1.001 4 1.121 1.960 1.289 2.829

6 1.014 0.757 0.999 -0.066 6 1.102 2.064 1.289 2.964

9 1.016 0.488 0.984 -0.545 9 1.108 1.242 1.270 2.340

12 1.006 0.254 0.970 -1.180 12 1.103 2.005 1.304 2.956

4 1 1.042 1.001 1.067 3.071 10 1 1.053 1.306 1.147 2.863

2 1.050 0.882 1.149 3.312 2 1.061 0.924 1.273 2.976

4 1.044 0.841 1.164 3.281 4 1.116 1.754 1.296 2.878

6 1.092 1.852 1.178 3.173 6 1.116 2.222 1.258 2.626

9 1.128 1.395 1.213 2.813 9 1.127 1.399 1.248 2.139

12 1.105 2.099 1.162 2.576 12 1.113 2.072 1.297 2.652

6 1 1.042 1.164 1.112 2.865 12 1 1.086 1.397 1.165 3.144

2 1.058 0.898 1.234 3.150 2 1.058 0.769 1.277 2.916

4 1.061 1.055 1.263 2.745 4 1.123 1.692 1.320 2.808

6 1.086 1.689 1.288 3.070 6 1.131 1.966 1.359 3.040

9 1.120 1.233 1.285 2.411 9 1.149 1.399 1.315 2.407

12 1.117 2.046 1.261 2.672 12 1.137 2.123 1.399 3.064

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared 
prediction error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial 
Least Squares factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and 
forecasting starting from the first 50% observations until we (out-of-sample) forecast the last observation 
of the KFSTI. DMW statistics in bold denote the rejection of the null hypothesis of equal predictability 
at the 5% significance level in favor of our factor models. The asymptotic critical values from the 
standard normal distribution are used.
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Table 8: PLS-PCA-AR vs. AR: Foreign Exchange Market

    
    

′
ｚ vs.     

  

Recursive Rolling Window Recursive Rolling Window

           

2 1 1.033 1.244 0.997 -0.268 8 1 1.030 0.752 0.939 -3.054

2 1.002 0.063 0.970 -1.838 2 0.998 -0.071 0.932 -2.881

4 0.999 -0.134 0.996 -0.784 4 1.020 0.434 0.949 -1.320

6 0.984 -0.367 0.993 -0.874 6 0.877 -2.386 0.931 -2.562

9 0.947 -2.168 1.020 0.711 9 0.899 -2.191 0.967 -1.092

12 0.951 -1.033 0.991 -1.046 12 0.944 -0.964 0.947 -1.880

4 1 1.033 0.977 0.973 -2.458 10 1 1.005 0.098 0.937 -3.363

2 0.997 -0.117 0.962 -2.206 2 0.998 -0.056 0.915 -3.006

4 0.988 -0.352 0.988 -1.091 4 0.978 -0.558 0.925 -2.026

6 0.954 -1.054 0.990 -0.882 6 0.853 -1.860 0.934 -2.107

9 0.926 -1.991 1.026 1.369 9 0.877 -1.757 0.952 -1.384

12 0.980 -0.516 0.983 -1.049 12 1.007 0.063 0.903 -2.821

6 1 1.027 0.712 0.966 -2.322 12 1 0.983 -0.299 0.928 -3.176

2 0.998 -0.061 0.944 -2.557 2 0.964 -0.806 0.894 -2.714

4 1.012 0.329 0.971 -1.856 4 0.970 -0.434 0.885 -1.253

6 0.922 -2.153 0.991 -0.549 6 0.806 -1.785 0.905 -2.078

9 0.913 -1.836 0.988 -0.659 9 0.865 -2.357 0.963 -1.101

12 0.963 -1.138 0.965 -1.314 12 0.988 -0.111 0.894 -2.771

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared 
prediction error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial 
Least Squares factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and 
forecasting starting from the first 50% observations until we (out-of-sample) forecast the last observation 
of the KFSTI. DMW statistics in bold denote the rejection of the null hypothesis of equal predictability 
at the 5% significance level in favor of our factor models. The critical values are from McCracken (2007) 
to avoid size distortion because the benchmark model is nested by our factor model.
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Table 9: PLS-PCA-AR vs. AR: Stock Market

    
    

′
ｚ vs.     

  

Recursive Rolling Window Recursive Rolling Window

           

2 1 1.021 1.510 1.039 2.691 8 1 1.044 1.733 1.020 0.768

2 1.001 0.135 1.022 1.897 2 1.011 0.609 1.002 0.100

4 0.990 -1.818 1.038 2.722 4 1.021 1.265 0.928 -1.829

6 0.993 -2.431 1.018 0.954 6 0.984 -1.202 0.922 -1.516

9 0.997 -0.349 0.973 -0.886 9 1.019 0.942 0.820 -2.984

12 0.999 -0.091 0.923 -1.604 12 1.018 0.633 0.874 -2.109

4 1 1.033 1.344 1.028 1.901 10 1 1.053 1.936 1.026 0.890

2 1.015 0.782 1.027 2.017 2 1.004 0.234 0.998 -0.049

4 0.999 -0.108 1.015 0.902 4 1.021 1.307 0.917 -1.880

6 1.002 0.242 1.002 0.090 6 0.990 -0.634 0.887 -1.763

9 1.011 0.649 0.957 -1.076 9 1.022 1.009 0.805 -2.280

12 0.991 -0.471 0.916 -1.696 12 1.027 0.914 0.848 -1.750

6 1 1.050 2.068 1.016 0.702 12 1 1.069 1.729 1.034 1.189

2 1.010 0.485 1.019 0.775 2 0.999 -0.062 0.993 -0.183

4 1.001 0.056 0.953 -1.359 4 1.020 1.069 0.906 -1.853

6 0.993 -0.784 0.918 -2.330 6 0.999 -0.081 0.887 -1.884

9 1.015 1.191 0.846 -2.666 9 1.047 1.846 0.809 -2.298

12 0.996 -0.191 0.869 -2.200 12 1.024 0.832 0.848 -1.903

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared 
prediction error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial 
Least Squares factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and 
forecasting starting from the first 50% observations until we (out-of-sample) forecast the last observation 
of the KFSTI. DMW statistics in bold denote the rejection of the null hypothesis of equal predictability 
at the 5% significance level in favor of our factor models. The critical values are from McCracken (2007) 
to avoid size distortion because the benchmark model is nested by our factor model.
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2.3. Comparisons with the PC Models

This sub-section compares the out-of-sample prediction performances of the 
PLS models relative to those of the PC models using the RRMSPE criteria, the 
RMSPE from the PLS model divided by the RMSPE from the corresponding PC 
model. That is, RRMSPE greater than 1 implies a better performance of the 
PLS model.

As can be seen in Figure 6 for the KFSTI-FX, the PLS-RW model outperforms 
the PC-RW model in all forecast horizons we consider. It is interesting to see 
that the PLS-RW model's relative performance becomes better as we employ 
more factor estimates or when forecast horizons become longer. On the other 
hand, we observed qualitatively similar performance of the PLS-AR model and 
the PC-AR model in predicting the KFSTI-FX, even though the PLS-AR model 
tend to perform better in short-term forecast horizons with many factor 
estimates.

The PLS-RW model again demonstrates substantially better performance 
than the PC-RW model in predicting the KFSTI-Stock in all forecast horizons 
under both the recursive and the fixed-size rolling window schemes. 
Interestingly, the PC-AR model overall outperforms the PLS-AR model for the 
KFSTI-Stock under the recursive scheme, while the latter outperforms the 
former under the fixed-size rolling window scheme. This seems to explain slight 
improvements in forecasting performance, see Table 5 and Table 9, under the 
recursive scheme when we combine PLS and PC factors together.

Lastly, we compare the performances of the PLS-AR model and the PLS-RW 
model using the RRMSPE criteria. RRMSPE greater than 1 implies that the 
PLS- AR model outperforms the PLS-RW model. Results are reported in Figure 
8. It should be noted that both PLS models perform similarly well in short-term 
forecast horizons unless very small numbers of factors are employed. However, 
as the forecast horizon increases, the PLS-AR model tend to outperform the 
PLS-RW model. Note that the PLS-RW is based on the RW model, which is a 
"no change" prediction model. If the KFSTI obeys a mean reverting stochastic 
process, RW type models would not perform well in long-term forecast 
horizons. To check this possibility, we employed the conventional ADF test, 
which rejected the null of nonstationarity at the 5% significance level for both 
indices, confirming the conjecture described earlier.10)



27 BOK Working Paper No. 2017-14

10) Results are available upon requests.

Figure 6: Cross-Comparisons: Foreign Exchange Market

Note: We report the RRMSPE defined as the RMSPE of the PC method divided the RMSPE of the PLS. That 
is, the PLS method outperforms the PC method when RRMSPE is greater than one.

Figure 7: Cross-Comparisons: Stock Market

Note: We report the RRMSPE defined as the RMSPE of the PC method divided the RMSPE of the PLS. That 
is, the PLS method outperforms the PC method when RRMSPE is greater than one.
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Ⅳ. Concluding Remarks

This paper proposes a factor-augmented forecasting model for the systemic 

risks in Korea's financial markets using the partial least squares (PLS) method as 

an alternative to the method of the principal components (PC). Unlike PC 

factor models that estimate common factors solely from predictor variables, the 

PLS approach generates the target specific common factors utilizing covariances 

between the predictors and the target variable.

Taking the Bank of Korea's Financial Stress Index (KFSTI) as a proxy 

variable of the financial vulnerability in Korea, we applied PLS to a large panel 

of 198 monthly frequency macroeconomic variables and the KFSTI from 

October 2000 to June 2016. Obtaining PLS common factors, we augmented the 

Figure 8: Cross-Comparisons: PLS-RW vs. PLS-AR

Note: We report the RRMSPE defined as the RMSPE of the PLS-RW model divided the RMSPE of the 
PLS-AR model. That is, the PLS-AR model outperforms the PLS-RW model when RRMSPE is greater 
than one.
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two benchmark models, the random walk (RW) model and the stationary 

autoregressive (AR) type model, with estimated PLS factors to out-of-sample 

forecast the KFSTI for the foreign exchange market and the stock market. We 

then implemented an array of out-of-sample prediction exercises using the 

recursive (expanding window) and the fixed-size rolling window schemes for 

1-month to 1-year forecast horizons.

We evaluate our proposed PLS factor-augmented forecasting models via the 

ratio of the root mean squared prediction error and the Diebold-Mariano-West 

statistics. Our PLS-RW models consistently outperform the nonstationary 

random walk benchmark model. On the other hand, the PLS-AR forecasting 

models perform better than the AR models only for short-term forecast 

horizons. That is, unlike the PLS-RW model, the performance of the PLS-AR 

model is not overwhelmingly better than its benchmark. However, it should be 

noted that the PLS-AR model, and of course the PLS-RW model, can still 

provide potentially useful early warning signs of financial distress before the 

systemic risks materialize in Korea's financial market within a month. 

Combining all together, the PLS factor models perform much better than the 

PC factor models especially when the models are combined with the 

nonstationary random walk benchmark model.
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부분최소자승법 모형을 통한 금융스트레스 지수

 예측력 제고

김형우*, 고경환** 

금융위기를 사전에 예측하기 위해 다수의 중앙은행은 금융시장 스트레스 지

수를 작성하여 활용하고 있으며, 한국은행도 2007년부터 동 지수를 작성하여 발

표하고 있다. 본고에서는 이러한 금융스트레스 지수에 대한 예측력을 제고하기 

위한 방법을 제시하고, 기존 예측 모형들과 비교·분석하였다. 기존 연구들은 주로 

주성분분석을 통해 여러 데이터에서 공통요인을 추출하여 예측에 활용하는 것이 

일반적이었으나, 본 연구에서는 예측하고자 하는 변수와 거시데이터 간 관계를 

고려하는 방법인 부분최소자승법을 도입하였다. 198개의 거시·금융 데이터에서 

부분최소자승법을 활용하여 잠재된 공통요인을 추출하였으며, 이 공통요인을 랜

덤워크 모형과 자기회귀 모형 등에 추가하여 지수를 예측하였다. 한편, 벤치마크 

모형으로 랜덤워크 모형과 자기회귀 모형을 설정하고, 주성분분석으로 추출한 공

통요인을 추가하여 부분최소자승법을 활용한 모형과 비교하였다. 각 모형들의 예

측력 비교에는 예측오차 평균제곱근비율(RRMSPE) 및  Diebold-Mariano-West 

통계량을 활용하였다. 분석결과 부분최소자승법을 통해 추출한 공통요인을 활용

한 모형 중 랜덤워크 모형은 모든 예측 기간에서, 자기회귀 모형은 단기 예측에서 

벤치마크 모형에 비해 예측력이 우월한 것으로 나타났다. 
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